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The current study investigated how young learners’ experiences with arithme-
tic equations can lead to learning of an arithmetic principle. The focus was
elementary school children’s acquisition of the Relation to Operands principle
for subtraction (i.e., for natural numbers, the difference must be less than the
minuend). In Experiment 1, children who viewed incorrect, principle-consistent
equations and those who viewed a mix of incorrect, principle-consistent and
principle-violation equations both showed gains in principle knowledge. How-
ever, children who viewed only principle-consistent equations did not. We
hypothesized that improvements were due in part to improved encoding of
relative magnitudes. In Experiment 2, children who practiced comparing
numerical magnitudes increased their knowledge of the principle. Thus, experi-
ence that highlights the encoding of relative magnitude facilitates principle
learning. This work shows that exposure to certain types of arithmetic equa-
tions can facilitate the learning of arithmetic principles, a fundamental aspect
of early mathematical development.

How do people acquire knowledge of general principles in domains such as
mathematics, language, and science? What role does experience play in the
acquisition of principle knowledge? In the case of mathematics, learners may
acquire principle knowledge from experience with many types of examples,
including both correct and incorrect examples. This article presents a pair of
experiments that investigate how experience facilitates learning of principles
in arithmetic. To address this issue, we draw on what is known about
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children’s arithmetic principle knowledge and their learning of regularities
in other domains. The results can inform both developmental theory and
educational practice.

PRINCIPLE LEARNING

Principles can be defined as general rules or regularities that correspond to
concepts within a domain. For example, in arithmetic, when adding natural
numbers, the result is always bigger than either addend. Arithmetic princi-
ples are an important aspect of mathematical knowledge (Dixon & Bangert,
2005; Canobi, 2005; Prather & Alibali, 2009; Rasmussen, Ho, & Bisanz,
2003). However, principle learning is also important in many other domains,
including counting (e.g., Gelman & Gallistel, 1978), language acquisition
(e.g., Aslin, Saffran, & Newport, 1998), proportional reasoning (e.g., Dixon
& Moore, 1996), and physics (e.g., Chi, Feltovich, & Glaser, 1982). Principle
knowledge is integral to having generalizable and flexible knowledge of a
problem domain.

The current study is concerned with the Relation to Operands principle.
Relation to Operands describes the relationships between the operands in a
given arithmetic equation and the result of the operation. The exact relation-
ship varies depending on the specific operation. For natural numbers, in
simple addition equations (aþ b¼ c), the sum (c) must be greater than the
two addends (a and b). In simple subtraction equations (a – b¼ c), the dif-
ference (c) must be less than the minuend (a); however, it may have any
relationship with the subtrahend (b). For example, for the equation
5þ 3¼ [?], the solution 4 is a violation of the Relation to Operands prin-
ciple, whereas the solutions 8 and 12 are not.

We focus on this principle because it is fundamental to an understanding
of arithmetic operations, and because it is of particular importance in early
mathematical development. The principle captures fundamental properties
of arithmetic operations. As such, it is one aspect of people’s conceptual
understanding of arithmetic operations, or their ‘‘operation sense’’ (Slavit,
1998).

Our specific focus is on the Relation to Operands principle for subtrac-
tion in symbolic format. Past research suggests that knowledge of subtrac-
tion concepts is quite fragile in the early elementary years (Baroody, 1999;
Baroody, Lai, Li, & Baroody, 2009) and that children tend to learn subtrac-
tive relations later than they learn additive relations (Canobi, 2005). The
inverse relationship between addition and subtraction in symbolic contexts
is not well understood by many early elementary school children (Baroody,
1999; Canobi, 2005). Further, previous research suggests that children’s
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knowledge of the Relation to Operands principle for subtraction is still
developing during elementary school (Dixon, Deets, & Bangert, 2001;
Prather & Alibali, 2009). Dixon et al. (2001) suggest that this is due to chil-
dren’s less extensive experience with subtraction, relative to addition.

Only fairly recently have researchers begun to directly investigate the
learning mechanisms involved in acquiring arithmetic principles (Canobi,
2009; Dixon & Bangert, 2005; Lai, Baroody, & Johnson, 2008; Prather &
Alibali, 2008a; Siegler & Stern, 1998). The general paradigm used in most
of these studies is to investigate how principles are learned in the course
of solving arithmetic equations for which the principle is relevant. In con-
trast, in this research, we investigate what students learn through exposure
to examples. Learners are exposed to many examples in the course of their
mathematical development. Further, learners can view examples of arithme-
tic equations before they are facile in actually solving the equations. Thus,
learning from exposure to arithmetic examples may be particularly appli-
cable in early development.

We hypothesize that learners may acquire principle knowledge through
exposure to structured examples. Learning of regularities through exposure
to examples is a form of implicit learning. The literature on implicit learning
has focused largely on two types of tasks: complex control systems and arti-
ficial grammars. In studies of learning about complex control systems
(e.g., Berry & Broadbent, 1984; Broadbent, FitzGerald, & Broadbent,
1986), participants practice operating on a system of variables to control
a single dependent outcome variable. Participants eventually gain a high
degree of skill; however, they remain very poor at explaining which vari-
ables affect the outcome. In studies of artificial grammar learning (e.g.,
Gomez & Schvaneveldt, 1994; Knowlton & Squire, 1996; Seger, 1994;
Tunney & Altmann, 1999), participants are exposed to examples that are
consistent with a predetermined finite-state grammar. The examples are
typically strings of letters of varying length (such as ABFE or ABBQW).
Participants may be instructed to memorize the examples or otherwise
pay attention to them, and they are not told that there are any regularities
in the stimuli to learn. After the initial exposure, participants’ knowledge of
the regularity is assessed via their evaluation of novel examples that either
violate or are consistent with the regularity. The general consensus is that
participants are often able to learn what seem like complex regularities
through exposure to consistent examples. In both complex control systems
and artificial grammar learning, participants’ behavior is dependent on
aspects of the environment that are learned through experience with the
stimuli—either simple exposure, in the case of artificial grammar learning,
or experience with the causal relations involved in the system, in the case
of complex control systems.
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In most implicit learning studies, all of the examples that participants
encounter are consistent with the principle. However, a body of research
on analogical reasoning (Gentner & Medina, 1998), inductive reasoning
(Kalish & Lawson, 2007), categorization (Namy & Clepper, 2010), contrast-
ing cases (Rittle-Johnson & Star, 2007), and cognitive conflict (e.g.,
Eryilmaz, 2002; Grobe & Renkl, 2007) suggests that exposure to both
principle-consistent and principle-violation examples may facilitate learning
more than exposure to principle-consistent, error-free examples alone. In
one such study, elementary school students who explained both correct
and incorrect solutions to mathematical equivalence problems (e.g., 3þ 4
þ 6¼ __þ 6) learned more than students who explained only correct solu-
tions (Siegler, 2002). In another study, learners’ knowledge of decimal con-
cepts improved when they spent time considering conceptually incorrect
examples in addition to correct examples (Huang, Liu, & Shiu, 2008). For
example, a student may be asked ‘‘Does the 4 in 5.4 mean that there are
‘four’ pancakes?’’ This question poses an incorrect interpretation, and
should be answered with ‘‘no.’’

In general, learners who are exposed to both correct and incorrect exam-
ples have access to more information about regularities in the domain. In
support of this idea, contrasting different types of examples is a common
practice in mathematics instruction, particularly in high-performing coun-
tries (Richland, Zur, & Holyoak, 2007; Stigler & Hiebert, 1999). Thus,
although many implicit learning tasks show learning and generalization
from principle-consistent examples only, other evidence suggests that lear-
ners stand to benefit when contrasts between principle-consistent and
principle-violation examples are made available. We hypothesize that this
is the case for arithmetic principles.

ARITHMETIC PRINCIPLE KNOWLEDGE DEPENDS
ON ENCODING OF EQUATIONS

Changes in learners’ knowledge have been attributed to changes in their encod-
ing in the problem domain (Karmiloff-Smith, 1992; McNeil & Alibali, 2004,
2005; Siegler, 1976). Encoding can be defined as the uptake of information
from the environment into working memory. For any given stimulus, whether
it is a simple arithmetic equation, a chess board scene, or a physics problem,
there are many features that can be encoded by the learner. For example, con-
sider the simple equation 8þ 3¼ 11. Learners could note the color of the
numerals, the order of the numbers, the type of operation, the value of the
operands, or the relative magnitude of the operands and the sum. The learner
uses these encoded features to form an internal representation of the equation.
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This internal representation may also draw on other sources of knowledge
from long-term memory, such as prior knowledge of common problem
schemas.

Problem encoding and representation vary as a function of domain
knowledge or expertise. Studies comparing novices and experts in several
domains (e.g., chess, physics) have shown that experts more accurately
encode relevant displays (Chase & Simon, 1973; Larkin, McDermott,
Simon, & Simon, 1980). Chess experts do not generally have better memory
than chess novices; however, they are superior in encoding the positions of
chess pieces in actual game positions. In the domain of arithmetic, deficits
in encoding equations have been linked to difficulties in solving similar
equations (McNeil & Alibali, 2004).

The current study addresses encoding as it relates to arithmetic principle
knowledge. Problem encoding may change over the course of development
(Karmiloff-Smith, 1992), with the development of expertise in a domain
(Chase & Simon, 1973), or in the short term given particular sorts of experi-
ence (Alibali, Phillips, & Fischer, 2009; Siegler & Stern, 1998).We hypothesize
that changes in encoding are one mechanism that leads to gains in principle
knowledge.

OVERVIEW OF EXPERIMENTS

In the experiments that follow, we examine whether changes in encoding
and exposure to different types of examples contribute to the acquisition
of principle knowledge. In Experiment 1, we test the possibility that learners
may acquire the Relation to Operands principle for subtraction through
exposure to example equations with different types of errors, as in prior
work on implicit learning and cognitive conflict. Specifically, we compare
learning from exposure to examples that are consistent with the principle
and examples that violate the principle. For example, for the correct equa-
tion 12� 3¼ 9, one could also consider an incorrect principle-consistent
equation, such as 12� 3¼ 4, or an incorrect principle-inconsistent equation
(i.e., a principle violation), such as 12� 3¼ 14. Incorrect principle-
consistent equations still hold the general relational structure that defines
the Relation to Operands principle, whereas incorrect principle-inconsistent
equations do not.

We suggest that in considering examples with errors, participants may
note the importance of the relative magnitudes of the numbers involved in
subtraction equations, and they may adjust their encoding of subtraction
equations to emphasize relative magnitude. They may ultimately draw on
this improved encoding of relative magnitude to infer the regularity that
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in subtraction equations (with natural numbers), the result is always less
than the starting number. In Experiment 2, we test the role of encoding in
principle learning using a more direct manipulation of encoding, by provid-
ing participants with practice attending to relative magnitudes.

EXPERIMENT 1

This experiment tests the possibility that learners may acquire the Relation
to Operands principle for subtraction through exposure to examples. We
hypothesize that experience with principle-consistent incorrect and
principle-inconsistent examples will highlight the relevant regularities for
learners and subsequently lead to changes in learners’ encoding and
increased principle knowledge. Contrasting different types of examples
may promote improved encoding of problem features relevant for the
principle. We hypothesized that this would be most likely in the condition
that involved principle-inconsistent equations, incorrect principle-consistent
equations, and correct equations, as opposed to only correct and incorrect
principle-consistent equations, or only correct equations. This is because
of the contrast in the specific feature relevant to Relation to Operands—
the magnitude relations obtained between the operands and the result. This
contrast should make this feature more salient to the learner and hence more
likely to be encoded.

Method

Participants

Participants were children in Grades 2 (n¼ 81), 3 (n¼ 91), and 4 (n¼ 104).
This range of grade levels was selected because prior work suggested that
children at these grade levels may not have knowledge of the Relation to
Operands principle for subtraction (Prather & Alibali, 2007). We did not
collect information about children’s birth dates; however, in Grades 2
through 4, children range from 7 to 10 years old. Participants were recruited
through local parochial schools, and testing was conducted in students’
classrooms. A small subset of participants (n¼ 14, including 6 second-grade
students, 1 third-grade student, and 7 fourth-grade students, distributed
roughly equally across conditions) did not complete the worksheet; their
data were not included in the analysis.

All of the children were familiar with subtraction with natural numbers.
We reviewed the math textbooks used by the students and found that none
of the texts explicitly addressed Relation to Operands.
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Procedure

The study was conducted in participants’ classrooms and took approxi-
mately 20 minutes, not including instructions and setup. Worksheet book-
lets were passed out, and instructions were given orally to each class as a
whole. Each worksheet booklet consisted of a pretest principle knowledge
assessment, a training task, an equation-encoding task, and a posttest prin-
ciple knowledge assessment.

Pretest principle knowledge assessment. Participants engaged in an
equation evaluation task that was used to assess their principle knowledge.
Participants were asked to evaluate examples that did or did not violate the
target principle. Similar tasks that require participants to evaluate both prin-
ciple violations and incorrect nonviolations have been used in many prior
studies of arithmetic principle knowledge (e.g., Dixon & Bangert, 2005;
Dixon et al., 2001; Prather & Alibali, 2008a, 2008b; see Prather & Alibali,
2009, for review). This taskwas administered as part of theworksheet booklet.

In the equation evaluation task, participants were instructed to look over
sets of equations that had been produced by pairs of fictional students and
decide if one student understood arithmetic better or if the two students
understood the same amount. Thus, for each pair of students, participants
selected one of three options: one or the other of the two fictional students
understood math better, or the two students understood the same amount.
The task was introduced with the following instructions:

The worksheet that I passed out has some math problems that have been
solved by some other students. I’d like you to tell me what you think by
answering the questions. The front page has an example. Trevor and Luke
both solved five equations. The ones they got wrong are marked with an X.
They both got three wrong. I took a look at what their answers were for each
equation and decided that I thought that Luke understood math better and
circled his name.

In this worksheet, there are more students’ equations. I want you guys to
do the same. Take a look at the equations the students solved and decide
who understands math better. The ones they don’t get right are marked with
an X. Make sure to circle your answer. When you are done, I will walk around
and collect your worksheets.

The two fictional students in each pair solved the same five equations. For
each equation, either both students in the pair provided the correct solution
or both solved the equation incorrectly. For the incorrect equations (three of
the five equations), one student produced all principle-violation solutions
(i.e., principle-inconsistent incorrect solutions) while the other produced

338 PRATHER AND ALIBALI

D
ow

nl
oa

de
d 

by
 [

R
ic

ha
rd

 P
ra

th
er

] 
at

 2
2:

58
 1

5 
A

ug
us

t 2
01

1 



all principle-consistent incorrect solutions (see the Appendix for examples).
The deviation from the correct answer was the same across the two students
in each pair, and the two students’ work was displayed on the same page.
This task gave participants an opportunity to indicate that producing incor-
rect principle-consistent equations was better than producing incorrect
principle-violation equations. There were four items (i.e., four pairs of
students) on the pretraining principle knowledge assessment, so participants
had four opportunities to display this knowledge.

Training task. On two pages, participants were presented with four col-
umns of solved subtraction equations, each solved by one of two hypothetical
students. The participants were instructed to read through andmark the incor-
rect equations. Participants viewed 40 equations in total, in sets of 10.
Participants were assigned to one of three conditions: 1) correct: correct equa-
tions only; 2) principle-consistent: a mixture of correct and incorrect
principle-consistent equations (2 correct and 8 incorrect principle-consistent
equations in each set of 10); or 3) principle-inconsistent: a mixture of correct,
incorrect principle-consistent and incorrect principle-violation equations (2
correct and 4 incorrect principle-consistent, and 4 incorrect principle-violation
equations in each set of 10). This taskwas administered to students in the class-
room setting as part of theworksheet booklet. Students within each participat-
ing classroom were randomly assigned to conditions. Across conditions and
grade levels, participants’ performance on the training task averaged 95%.

By providing the stimuli all at once as opposed to serially, the memory
demands of the task were minimized. If learning occurs the way we theorize,
the learner must note general patterns across many equations. A display in
which the learner views many equations at once under no time constraints
may be most effective for young learners.

Equation-encoding task. On one page of the worksheet booklet, parti-
cipants viewed a circled arithmetic equation. Participants were instructed to
indicate whether the equation was correct or incorrect. After turning in their
booklet, participants received a second sheet with a ‘‘bonus question’’ that
asked them to recall the circled equation and to indicate whether the first
number in the circled equation was larger or smaller than the result. Parti-
cipants who correctly remembered the relative magnitudes of the numbers
were inferred to have encoded the relative magnitudes correctly. Parti-
cipants’ booklets were collected before the ‘‘bonus question’’ so that they
could not look back at the original equation.

Posttest principle knowledge assessment. The posttest principle
knowledge assessment used the same method, though not the exact same
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stimuli, as the pretest principle knowledge assessment. Cronbach’s alpha, a
common measure of reliability, for the principle knowledge measure was .73
at pretest and .78 at posttest, both ofwhich exceed the commonly recommended
minimum acceptable level of .6 (Hair, Anderson, Tatham, & Black, 1998).

Results

What Did Students in Each Grade Know Before Training?

We first examined participants’ pretest knowledge of the Relation to Oper-
ands principle for subtraction as a function of grade. On the pretest and
posttest principle knowledge assessments, points were awarded for each
comparison in which the participant indicated that the fictional student
who did not violate the principle understood arithmetic better than the stu-
dent who violated the principle. There were four items on each test; thus,
each participant received a score from 0 to 4 at pretest and at posttest. This
task involved a forced multiple choice between three options; thus, chance
would yield an average total score of 1.33.

There was a main effect of grade on participants’ pretest scores, F(2,
273)¼ 10.64, p< .01, g2¼ .07. Second-grade students (n¼ 81) averaged
1.59 points (SD¼ 1.46), third-grade students (n¼ 91) averaged 1.85 points
(SD¼ 1.48), and fourth-grade students (n¼ 104) averaged 2.54 points
(SD¼ 1.44), as seen in Figure 1. The second graders’ performance did not

FIGURE 1 Pretest principle knowledge scores for participants in grades 2, 3, and 4 by experi-

mental condition. The error bars represent standard errors.

340 PRATHER AND ALIBALI

D
ow

nl
oa

de
d 

by
 [

R
ic

ha
rd

 P
ra

th
er

] 
at

 2
2:

58
 1

5 
A

ug
us

t 2
01

1 



differ from chance, t(80)¼ 1.61, p¼ .11, d¼ 0.17. Third graders performed
above chance, t(90)¼ 3.32, p¼ .001, d¼ 0.34, and so did fourth graders,
t(104)¼ 7.94, p< .001, d¼ 0.83.

Did Participants’ Principle Knowledge Scores Increase After the
Training Task? Did Gains Depend on Which Type of Training
Stimuli They Viewed?

We first examined effects of training for the full sample of participants. A
mixed-model 2 (test: pretest or posttest)� 3 (condition)� 3 (grade) analysis
of variance (ANOVA) yielded a significant main effect of grade, F(2,
267)¼ 13.6, p<. 01, g2p ¼ .09, but no main effects of test, F(1, 267)¼ 1.85,
p¼ .17, g2p ¼ .007, or condition F(2, 267)¼ 1.51, p¼ .21, g2p ¼ .011. Interac-
tions between the factors were also nonsignificant: test� condition, F(2,
267)¼ 0.6, p¼ .55, g2p ¼ .004; test� grade, F(2, 267)¼ 0.57, p¼ .59,
g2p ¼ .004; condition� grade, F(4, 267)¼ 0.87, p¼ .48, g2p ¼ .013; test�
grade� condition, F(4, 267)¼ 1.32, p¼ .24, g2p ¼ .02).

Because this experiment focused on the acquisition of principle knowl-
edge, we also analyzed the subsample of participants who began with low
principle knowledge scores on the pretest. For this analysis, we included
participants who scored below 2 on the pretest (n¼ 109), for two reasons.
First, the median pretest score was 2. Second, given that there were three
response options and four items, chance performance alone would yield a
score of 1.33.

For this subsample, a mixed-model 2 (test: pretest or posttest)� 3 (con-
dition)� 3 (grade) ANOVA yielded a significant overall effect of test, F(1,
100)¼ 16.23, p< .01, g2p ¼ .12, and a significant interaction between test
and condition, F(2, 100)¼ 2.94, p¼ .05, g2p ¼ .055. The main effect of con-
dition was not significant, F(2, 100)¼ 0.50, p¼ .60, g2p ¼ .01, nor was the
main effect of grade, F(2, 100)¼ 1.23, p¼ .29 g2p ¼ .024, the test� grade
interaction, F(2, 100)¼ 0.186, p¼ .83, g2p ¼ .004, the condition� grade inter-
action, F(4, 100)¼ 1.33, p¼ .26, g2p ¼ .051, or the test� grade� condition
interaction, F(4, 100)¼ 0.77, p¼ .54, g2p ¼ .03.

Planned contrasts that examined change in scores from pretest to posttest
indicated that participants in both the principle-inconsistent (M¼ 0.57,
SD¼ 1.06) and principle-consistent (M¼ 0.55, SD¼ 1.08) conditions
improved significantly more than participants in the correct condition
(M¼ 0.05, SD¼ 0.69), t(106)¼ 2.29, p¼ .024, d¼ 0.57, and t(106)¼ 2.27,
p¼ .025, d¼ 0.53, respectively (see Figure 2). Improvement in the principle-
inconsistent and principle-consistent conditions did not differ, t(106)¼ 0.09,
p¼ .93, d¼ 0.17.
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Were Learners’ Equation Encoding and Principle Knowledge Related?

This experiment included ameasure of equation encoding, whichwas based on
a single problem. This measure was administered at the end of the study, and it
referred to an equation that was presented after the training task. Thus, we
could not examine change in encoding as a function of training, but we could
examine the relation between encoding and principle knowledge at posttest.

Overall, 60% of participants answered the encoding problem correctly.
This included 53% of second graders, 65% of third graders, and 60% of
fourth graders. Broken down by condition, this included 68% of participants
in the correct-only condition, 56% of participants in the principle-consistent
condition, and 56% of participants in the principle-inconsistent condition.
We hypothesized that learners who accurately encoded magnitude relations
(i.e., who correctly answered whether the first number was smaller or bigger
than the last) would display more principle knowledge than those who did
not encode magnitude relations. Considering the sample as a whole, the
means were in the predicted direction; however, the difference in posttest
performance between participants who correctly encoded magnitude rela-
tions in the target equation (M¼ 1.99, SD¼ 1.62) and those who did not
(M¼ 1.83, SD¼ 1.49) was small and not significant, t(274)¼ 0.81, p¼ .41,
d¼ 0.10. There was also no significant association between condition and
encoding performance, v2(2, N¼ 274)¼ 3.75, p¼ .15.

FIGURE 2 Pretest to posttest principle knowledge scores by condition, for participants who

scored <2 on the pretest principle knowledge assessment. The error bars represent standard

errors.
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Experiment 1 Discussion

This study demonstrated that exposure to equations can affect learners’
acquisition of the Relation to Operands principle. Children showed differen-
tial gains in principle knowledge as a function of their exposure to different
types of arithmetic equations. In contrast to work on principle learning in
other domains (e.g., artificial grammar learning), participants did not bene-
fit when they were exposed only to correct examples. Put another way, par-
ticipants who viewed solely correct equations showed no change in principle
knowledge during the experiment. This result is consistent with work on
cognitive conflict (e.g., Huang et al., 2008), which suggests that experience
with conflicting examples (rather than solely correct examples) is especially
likely to provoke changes in principle knowledge. This is an important find-
ing, as formal education often involves maximizing experience with correct
equations (Stigler & Hiebert, 1999).

We hypothesized that exposure to contrasting examples would promote
improved encoding of problem features that vary across examples. When
examples vary in terms of features relevant to the principle, the contrast
should make those features more salient, hence more likely to be encoded,
and ultimately more likely to be used in building principle knowledge. Thus,
we predicted that participants would show the greatest gains in principle
knowledge in the condition that included both principle-consistent and
principle-violation examples, because these examples contrast in the specific
feature relevant to Relation to Operands—the magnitude relations that are
obtained between the operands and the result. Indeed, participants did bene-
fit when they had the opportunity to compare principle-consistent and
principle-violation examples. This finding is consistent with prior work on
arithmetic principle acquisition in adults, which suggested that training sets
that include principle-violation equations lead to substantial gains in prin-
ciple knowledge (Prather & Alibali, 2008a).

However, in the present study, we also found that participants benefited to
the same extent in the condition that included only principle-consistent and
correct examples (and no principle violations). Put another way, the training
set that included principle-consistent incorrect equations but no principle vio-
lations was as effective at promoting learning as the training set that included
principle violations. Why might this be the case? It may be that the crucial
variable is getting the learner to contrast differing solutions to arithmetic
equations. These findings echo those from other studies suggesting that com-
parison is an effective means of promoting mathematics learning (e.g.,
Rittle-Johnson & Star, 2007). Comparison may promote deeper processing
of the material, which in turn may make learners more likely to notice a regu-
larity, or which may promote more accurate encoding of problem features.
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Of course, there are limits to the conclusions that can bemade based on this
experiment. The three training conditions we used did not exhaust the poss-
ible types of experience that may facilitate learners’ principle acquisition. It
is possible that viewing principle violations alone might also lead to increased
principle knowledge. It is also plausible that there may be a threshold effect,
such that children need to see only a few examples of principle-consistent
errors to benefit. Future studies will be needed to test these possibilities.

The results suggest that an approach to arithmetic principle learning that
includes exposure to different types of examples can be quite effective.
Though participants in this experiment showed learning based only on a
small amount of exposure, it is likely that repeated exposure would be neces-
sary in educational practice. And of course, we do not recommend that sim-
ple exposure to examples should take the place of other types of instruction.
Instead, we suggest that implicit learning of arithmetic principles may be
used to supplement other types of instruction, including more explicit or
direct instruction. Exposure to varying examples may be particularly useful
because it may be introduced to learners early, before they are skilled
enough to solve arithmetic equations on their own.

EXPERIMENT 2

Experiment 1 showed that exposure to diverse example problems led to
gains in principle knowledge. We hypothesize that experience with different
types of equations may lead to improvements in problem encoding, which in
turn informs principle knowledge. Although the encoding results in Experi-
ment 1 were not as expected, we believe that improvements in problem
encoding may be one mechanism underlying the effects observed in Experi-
ment 1. To address this possibility, we more directly examine the possible
link between improvements in problem encoding and gains in principle
knowledge in Experiment 2.

In this experiment, we sought to directly address the question of whether
changes in problem encoding can lead to gains in principle knowledge. We
did this by manipulating participants’ encoding. Specifically, this experiment
investigated whether giving children practice in encoding relative magnitude
would lead to learning of the Relation to Operands principle for subtraction.

Method

Participants

Participants (N¼ 107) were second-grade students recruited through a local
parochial school. Testing was conducted in their classrooms. We chose to
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work with second graders because children at this grade level, as a group,
showed chance performance on the principle knowledge pretest in Experi-
ment 1. We did not collect information about children’s birth dates; how-
ever, in Grade 2, children range from 7 to 8 years old. A small subset of
participants (n¼ 16) were not included in the analyses due to experimenter
error (n¼ 7) or not completing the worksheet (n¼ 9).

All of the children were familiar with subtraction with natural numbers.
We reviewed the math textbook used by the students and found that it did
not explicitly address Relation to Operands.

Procedure

The procedure was similar to that used in Experiment 1. Participants were
given worksheets that took approximately 20 minutes to complete, not
including instruction and setup.

Pretest principle knowledge assessment. The pretest principle knowl-
edge assessment was identical to that used in Experiment 1.

Training task. On two pages, participants were shown rows of three
numbers each. At the top of each page, participants were instructed to circle
certain types of numbers. Participants in the relation condition were asked
to circle the biggest (or smallest) number in each row. This condition was
expected to foster children’s encoding of the relative magnitudes of num-
bers, which is crucial to the Relation to Operands principle. Participants
in the parity condition were asked to circle the odd (or even) number in each
row. This condition was expected to foster participants’ encoding of parity,
which is not relevant to the Relation to Operands principle. In the parity
condition, participants averaged 85% correct on the training task, and in
the relation condition, they averaged 82% correct.

Equation-encoding task. The equation-encoding task was identical to
that used in Experiment 1.

Posttest principle knowledge assessment. The posttest principle
knowledge assessment used the same method as the pretest assessment.

Results

What Did Students Know at Pretest?

Scoring of the pretest and posttest principle knowledge assessments was
identical to Experiment 1; each participant received a score from 0 to 4 at
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pretest and at posttest. As in Experiment 1, chance would yield an average
total score of 1.33. Overall, participants’ scores on the pretest were statisti-
cally above chance (M¼ 1.72, SD¼ 1.35), t(89)¼ 2.81, p< .01, d¼ 0.29, sug-
gesting some knowledge of the principle prior to training in the overall
sample, unlike the second-grade students in Experiment 1. This finding sug-
gests that a younger age group may have been warranted for this experi-
ment; however, our pilot testing indicated that the task was too difficult
for most first graders, so we limited the sample to second graders.

Did Participants’ Principle Knowledge Scores Increase After the
Encoding Manipulation? Did Improvement Depend on Which Type
of Encoding Practice They Received?

We first examined effects of the manipulation in the full sample of parti-
cipants. A mixed-model 2 (test: pretest or posttest)� 2 (condition) ANOVA
yielded a main effect of test, F(1, 89)¼ 8.35, p¼ .005, g2p ¼ .086, but no effect
of condition, F(1, 89)¼ 0.04, p¼ .84, g2p < .0001, and no test� condition
interaction, F(1, 89)¼ 0.58, p¼ .44, g2p ¼ .006.

Because this experiment focused on the acquisition of principle knowl-
edge, we also conducted an analysis on the subsample of participants who
had low principle knowledge scores on the pretest (i.e., scores below chance,
<2 on the pretest principle knowledge assessment, n¼ 43). We hypothesized

FIGURE 3 Pretest and posttest principle knowledge scores by condition, for participants who

scored <2 on the pretest principle knowledge assessment. The error bars represent standard

errors.
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that participants in the relation condition, who practiced encoding relative
magnitude during the training session, would show greater gains in principle
knowledge than participants in the parity condition, who practiced encoding
the parity of the numbers. To test this hypothesis, we conducted a
mixed-model 2 (test: pretest or posttest)� 2 (condition) ANOVA. This
analysis yielded a significant effect of test, F(1, 41)¼ 19.45, p< .01,
g2p ¼ .32, but no main effect of condition, F(1, 41)¼ 2.54, p¼ .15, g2p ¼
.048. The test� condition interaction also did not reach significance,
F(1, 41)¼ 2.78, p¼ .10, g2p ¼ .064 (see Figure 3). There were no differences
between conditions at pretest, F(1, 41)¼ 0.009, p¼ .92, g2p ¼ .001. However,
planned contrasts that examined change in scores from pretest to posttest
revealed that participants in the relation condition (M¼ 1.17, SD¼ 1.30)
improved more than participants in the parity condition (M¼ 0.52,
SD¼ 1.17), F(1, 41)¼ 6.03, p¼ .02, g2p ¼ .10; see Figure 3).

Were Learners’ Equation Encoding and Principle Knowledge Related?

Because there was only one encoding assessment, administered at posttest,
we were not able to examine change in encoding as a function of encoding
practice. However, we could examine the relation between encoding and
principle knowledge at posttest.

Overall, 46% of participants in the relation condition and 42% of parti-
cipants in the parity condition succeeded on the encoding item. Of course,
these values are difficult to interpret because we do not have corresponding
pretest data. We hypothesized that learners who encoded magnitude rela-
tions in equations would display more principle knowledge at posttest than
those who did not, regardless of condition. As predicted, participants who
succeeded on the encoding item after training scored higher on the posttest
than those who did not (M¼ 2.43, SD¼ 1.56 vs. M¼ 1.81, SD¼ 1.41),
t(90)¼ 1.85, p¼ .03, one-tailed, d¼ 0.41.

Experiment 2 Discussion

This experiment examined the effect of practice in encoding the relative
magnitudes of numbers on children’s understanding of the Relation to
Operands principle. For participants who began with low knowledge of
the Relation to Operands principle, practice encoding relative magnitudes
led to gains in principle knowledge, more so than practice encoding parity.
This suggests that encoding of relative magnitude is an important part of
acquiring knowledge of the Relation to Operands principle.

One might question whether participants in the relation condition were
actually learning the principle or just learning to notice a relation that they
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already understood. In our view, their improved performance on the prin-
ciple knowledge task at posttest suggests that participants did indeed learn
something about the principle. In this regard, it seems likely that encoding
relative magnitudes is necessary but not sufficient for acquisition of the
Relation to Operands principle. Learners must not only encode relative
magnitudes in the arithmetic equation, but they must also note which pat-
tern of magnitudes is consistent with subtraction and which pattern is
not. Participants could have begun to notice relative magnitudes but then
used that encoded feature incorrectly (i.e., by choosing the student who
produced solutions that were larger than the starting number as having bet-
ter knowledge). Accurate encoding of a regularity is a first step in construct-
ing principle knowledge, but it is not the end of the line: Participants need to
build on this knowledge by drawing out the implications of that regularity—
in this case, by noting which pattern of relative magnitudes is consistent with
subtraction and which pattern is not. Given that participants who received
practice encoding relative magnitudes increased their principle knowledge,
we infer that some participants were able to do just that.

GENERAL DISCUSSION

Empirical Summary

In Experiment 1, we showed that learners who had the opportunity to com-
pare correct and incorrect problem examples showed greater gains in prin-
ciple knowledge than learners who were exposed to correct examples only.
In Experiment 2, we showed that learners who practiced encoding a problem
feature that was relevant to the principle also showed greater gains in prin-
ciple knowledge. These findings suggest two main conclusions. First, the
types of examples learners view, even if they are not working through those
examples, can influence their learning. Second, changes in how learners
encode examples can also influence learning. We suggest that changes in
encoding of relevant problem features may be one mechanism by which
exposure to examples may lead to gains in principle knowledge.

This research focused on learning of an arithmetic principle as it applies
in symbolic equations; however, the basic phenomenon may apply broadly,
to other principles and other contexts. The use of comparison and contrast
to highlight relevant similarities and differences has been shown to promote
learning of different types of information (e.g., procedures, categories,
conceptual knowledge) in several domains (Gentner & Medina, 1998;
Hattikudur & Alibali, 2010; Kalish & Lawson, 2007; Namy & Clepper,
2010; Rittle-Johnson & Star, 2007). Comparing correct and incorrect exam-
ples may be particularly beneficial (Eryilmaz, 2002; Große & Renkl, 2007;
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Huang et al., 2008; Siegler, 2002). The present work highlights the value of
comparing correct and incorrect examples in the acquisition of principle
knowledge.

Why Does Experience With Correct and Incorrect Examples
Promote Learning?

We have suggested that experience with a mixture of correct and incorrect
examples may promote learning by fostering improved encoding of the
examples. In particular, comparing examples may help students to focus
on key structural features of the problems, rather than more superficial fea-
tures (e.g., Cummins, 1992; Gick & Paterson, 1992). Domain principles
depend on structural features; for example, the Relation to Operands prin-
ciple hinges on the relative magnitudes of the operands and result in equa-
tions. Thus, it makes sense that improved encoding of structural aspects of
problems could lead to gains in principle knowledge.

In a similar vein, some recent work has suggested that perceptual learning
is an integral component of learning to solve problems in mathematics and
other domains. In studies of fraction and algebra learning, Kellman and col-
leagues (2008) used computer-based interventions designed to foster percep-
tual learning of problem structure—specifically, by providing students with
practice in classifying problems in terms of their underlying structure.
Students who received such opportunities for perceptual learning showed
greater gains in problem-solving performance and transfer, relative to
students who did not have such experience. These findings highlight the
importance of fluency in encoding problem structure, particularly for gener-
alization to novel contexts. This idea seems particularly applicable in the
case of early arithmetic, which has been shown to have a strong perceptual
component (Landy & Goldstone, 2007; McNeil & Alibali 2004).

Of course, it is unlikely that improvements in encoding or perceptual
learning of problem structure are the only mechanisms by which experience
with examples promotes learning. Other mechanisms are surely at play. One
possibility is that experience with diverse examples may foster abstraction
of a general problem schema (Catrambone & Holyoak, 1989). A problem
schema abstracts away from the particulars of individual problems and
retains key structural features. As such, abstraction of a problem schema
could be one step in the process of building principle knowledge.

Another possibility is that experience with diverse examples, and in parti-
cular, experience with problems or solution strategies that are incorrect, may
promote deeper processing of the material. This deeper processing may in
turn make learners more likely to notice and encode regularities, some of
which may tie to domain principles. This notion is similar to one proposed
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by Schwartz and Bransford (1998), who argued that experience with con-
trasting cases promotes the development of differentiated knowledge struc-
tures, which prepare the learner to understand subsequent material at a
deeper level.

Limitations

The current experiments have several limitations that must be acknowl-
edged. The manipulations in both experiments were relatively brief; each
experiment was only about 20 minutes in duration in total, and in each
experiment, the number of stimuli used in the training task was 40.
Though low-knowledge participants showed changes in behavior even with
a single, brief training session in both experiments, for effective use in edu-
cational settings, these ideas would need to be implemented during a
longer period.

We showed in Experiment 2 that encoding practice fostered acqui-
sition of principle knowledge; however, we did not provide direct evi-
dence that exposure to diverse examples promotes improved encoding.
The encoding measure involved only one equation, in part due to limita-
tions on collecting data in the classroom setting. We believe that this
brief, posttest-only measure may not have been sufficiently sensitive to
detect differences in encoding in Experiment 1. It is also possible that
some participants may have encoded relative magnitudes correctly but
not used this encoded information to inform their principle understand-
ing (see Siegler, 1989, for a discussion of encoded-but-not-used features),
or used this encoded information in an incorrect way (i.e., they may
have systematically chosen the violation as better than the nonviolation).
Future work is needed to more directly address the role of problem
encoding in principle knowledge acquisition. Experiments conducted in
a laboratory setting would have more flexibility in assessing equation
encoding.

Educational Implications

The present findings have implications for mathematics education. Contin-
ued and repetitive exposure to correct arithmetic equations may not be opti-
mal for students’ principle learning. This is not a completely novel idea;
some educational practices include discussion of incorrect solutions or
incorrect strategies (see Stigler & Hiebert, 1999). However, occasionally dis-
cussing an incorrect strategy produced by a student is quite different from
deliberately structuring learning materials to include incorrect examples that
may violate a domain principle.
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Educators would likely also be interested in more multifaceted assess-
ments of learners’ principle knowledge. The current study, as with many stu-
dies of arithmetic principle knowledge, used a single-faceted knowledge
assessment (see Prather & Alibali, 2009, for discussion of this issue). It
would be beneficial both for applications to the classroom and for further
explication of how arithmetic principle knowledge develops to expand this
work to include different types of principle knowledge assessments and dif-
ferent types of problem formats (e.g., word problems or problems involving
physical manipulatives).

Conclusion

In sum, the types of examples learners view, even if they do not work
through those examples, can influence their learning of principles. Changes
in how learners encode examples can also influence their principle learning.
Although our data do not show this directly, we suggest that exposure to
examples may lead to knowledge change by fostering improvements in
encoding of problem features. Thus, a first step in building principle knowl-
edge is learning what features deserve attention.
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APPENDIX

Mr. Jones’s students are learning math.
Sometimes they get the wrong answers. The wrong answers are marked

with an X. Take a look at the math these students did.

Tasha Ruth

1) 12� 4¼ 8 1) 12� 4¼ 8

2) 10� 2¼ 5 X 2) 10� 2¼ 11 X

3) 13� 1¼ 9 X 3) 13� 1¼ 15 X

4) 14� 4¼ 5 X 4) 14� 4¼ 15 X

5) 5� 1¼ 4 5) 5� 1¼ 4

Who understands math better?
Tasha; Ruth; They are the same.
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