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Abstract

The current study presents a series of computational simulations that demonstrate how the neural coding of numerical magnitude
may influence number cognition and development. This includes behavioral phenomena cataloged in cognitive literature such as
the development of numerical estimation and operational momentum. Though neural research has begun to describe neural
coding of number, it is unclear how specific characteristics of the neural coding may relate to the expansive list of behavioral
phenomena in the development of number cognition. The following study considers several possibilities.

Introduction

Number cognition, broadly speaking, includes numerical
estimation, simple arithmetic operations, magnitude
judgments, and counting amongst other skills. There is a
long history of research on number cognition, including
the cognitive and neural processes involving numerical
magnitude. Research includes behavioral studies of
number development (e.g. Gelman & Gallistel, 1978;
Piaget, 1954, amongst others) and more recently a large
number of neural studies relevant to number cognition
(e.g. Ansari & Dhital, 2006; Ansari, Garcia, Lucas,
Hamon & Dhital, 2005; Cantlon, Brannon, Carter &
Pelphrey, 2006; Cantlon, Libertus, Pinel, Dehaene,
Brannon & Pelphrey, 2008; Cohen Kadosh & Walsh,
2009; Dehaene, Piazza, Pinel & Cohen, 2003; Gçbel,
Calabria, Farn� & Rossetti, 2006; Pesenti, Thioux,
Samson, Bruyer & Seron, 2000; Walsh, 2003; Whalen,
McCloskey, Lesser & Gordon, 1997). This increasingly
large literature involving humans has been supplemented
by research with non-human primates (e.g. Brannon &
Terrace, 1998; Nieder & Miller, 2003; Roitman, Brannon
& Platt, 2007) and by computational methods that
incorporate neural principles (e.g. Ahmad, Casey & Bale,
2002; Dehaene, 2007; Dehaene & Changeux, 1993; Ver-
guts & Fias, 2004; Zorzi, Stoianov & Umilt�, 2004).

Significant contributions to cognitive development
have been made through computational modeling that
connects neural and behavioral data – in areas of lan-
guage learning (Elman, 1993), motor development (e.g.
Spencer, Simmering, Schutte & Schçner, 2007), and
visual development (e.g. Mareschal & Johnson, 2002).
For example, Spencer and colleagues use neurocompu-

tational modeling to provide evidence for a novel inter-
pretation of the classic A-not-B error developmental
phenomenon (Piaget, 1954). By modeling of visual-
motor neural processes Spencer and colleagues conclude
that the A-not-B phenomenon is an example of a broader
class of errors that occur in development. The current
study presents a series of simulations based on recent
advances in the study of the neural coding of numerical
magnitude that offer new insights into behavioral phe-
nomena described in the developmental literature.

Neural coding of number

A variety of investigations with both humans and non-
human primates have characterized the neural activity
related to the perception of number. First, research has
focused on the localization of neural activity specific to
number. There has been convergence on the intraparietal
sulcus and areas of prefrontal cortex (e.g. middle frontal
gyrus) from both humans (e.g. Ansari & Dhital, 2006;
Ansari et al., 2005; Cantlon et al., 2006; Cantlon et al.,
2008; Dehaene et al., 2003) and non-human primates
(Nieder, Freedman & Miller, 2002; Nieder & Miller,
2003; Nieder & Merten, 2007; Sawamura, Shima & Tanji,
2002). Numerical coding activity has been recorded in
both intraparietal sulcus and prefrontal cortex; two areas
that have been found to be functionally connected
(Cavada & Goldman-Rakic, 1989; Chafee & Goldman-
Rakic, 2000; Quintana, Fuster & Yajeya, 1989). Neural
activity in these areas has been recorded in tasks such as
number magnitude comparison, arithmetic operations
and even the perception of a digit. The basic result has
been replicated across a variety of presentation formats,
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such as dot displays and written digits (Eger, Sterzer,
Russ, Giraud & Kleinschmidt, 2003) and cultures (Tang,
Zhang, Chen, Feng, Ji, Shen, Reiman & Liu, 2006).

Second, studies have described in detail neural
responses to number with the use of direct neural
recording. Two types of neural coding have been
described: number selective coding and summation
coding. Summation, or monotonic coding, of number
includes graded coding that increases as the perceived
number magnitude increases (Roitman et al., 2007). This
type of coding is consistent with the accumulator model
of number representation; that number is represented by
accumulating a fixed number of pulses produced serially
by some pacemaker (Meck & Church, 1983). There is
also evidence of number specific activity in that the
spiking rate of a given set of neurons is correlated
maximally to a particular value N, and less so for N + 1,
N – 1 and so on (Nieder et al., 2002; Nieder & Miller,
2003; Nieder & Merten, 2007; Sawamura et al., 2002).
This holds across presentation format (e.g. dot displays,
written digits) of the numerical values. This type of
coding creates Gaussian-like neural tuning function (see
Figure 1). Each number magnitude is not coded exactly,
but in a manner that is consistent with Weber-Fechner’s
law (Fechner, 1966 [1860]); that noticeable differences
between perceptual stimuli are a function of the pro-
portional difference. As the magnitude of the number

increases the neural tuning function width increases
proportionally. For example, the width of the tuning
function for the magnitude 5 is half that of the magni-
tude 10, which is half of 20. Thus differences in the
perceived value are a function of the proportional stim-
ulus differences, as with Weber-Fechner’s law.

Theories of how number sensitive neural activity
develops have been supported by computational models
(e.g. Ahmad et al., 2002; Dehaene, 2007; Dehaene &
Changeux, 1993; Miller & Kenyon, 2007; Pearson,
Roitman, Brannon, Platt & Raghavachari, 2010; Verguts
& Fias, 2004). These studies demonstrate the develop-
ment of number selective activity from other inputs, such
as perceptual object tracking, or accumulator-like sum-
mation coding (Miller & Kenyon, 2007; Verguts & Fias,
2004). Computational results show number selective
activity coded with tuning functions that are propor-
tional to the number magnitude, skewed on the linear
scale and symmetric on the log scale, similar to the
neural data (Dehaene, 2007).

The current simulations

The current simulations are in part based on prior neural
and computational work. General aspects of the model
such as Gaussian tuning curves for number values have
been illustrated in prior neural (e.g. Nieder & Miller,
2003) and computational work (Dehaene, 2007; Verguts
& Fias, 2004). The current model posits these basic
aspects and focuses on developmental change in both the
neural activity and behavior. Prior computational work
has not provided a clear mechanism of how the neural
coding of number may influence developmental behav-
ioral phenomena, such as the apparent log to linear shift
in number line estimations; ‘what triggers the conceptual
shift from logarithmic to linear in children remains un-
known’ (Dehaene, 2007, p. 557). The current focus on
how changes in neural activity may influence behavioral
changes provides possible answers to this and other
questions of numerical development.

The current model focuses on two aspects of the neural
tuning curves. First, the width of the function depends
on the magnitude of the value being coded. Thus the
tuning function for the value 10 is narrower than the
function for the value 30, on a linear scale. The functions
are proportionally similar, and thus similar on a log scale
(Nieder & Miller, 2003; see Figure 1). Second, the tuning
functions, though resembling Gaussian distributions, are
positively skewed on a linear scale. The positive skew also
results from the transformation from a logarithmic scale
to a linear scale; if the tuning function is symmetric on a
log scale it will be positively skewed on a linear scale. In
their studies of non-human primates, Nieder and Miller
(2003) reported that neural responses are positively
skewed on a linear scale. In addition, Nieder and Merten
(2007) found that in the coding of values 1–30, smaller
values are clearly positively skewed, and larger values are
not skewed as much. Computational accounts (Dehaene,

Figure 1 Example neural tuning functions. Values 10 (black)
and 20 (grey) are shown on both linear (top graph) and log
(bottom graph) scales.
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2007; Verguts & Fias, 2004) have shown positive skew in
number coding that arises through unsupervised learning
with number magnitudes. Thus these two properties – the
logarithmic scale and the positive skew – may be fun-
damental aspects of the human number system.
Although both positive skew and proportional tuning
functions have been reported in the literature, their role
in number cognition has not been well studied.

The current study includes a series of computational
simulations that explore how the properties of the neural
coding of number may contribute to the development of
number cognition. More specifically, the simulations
provide a likely neural mechanism for several phenom-
ena previously only described behaviorally. The tasks
used in the simulations reflect the tasks used in behav-
ioral investigations of number line estimation and oper-
ational momentum. Within the simulations, for a given
set of numerical values there is a corresponding set of
neural tuning functions that resemble Gaussian distri-
butions with peak activity corresponds to the number
being coded (see Figure 2). The simulations specifically
examine the relation in coding between the positive skew
and the varying width of the tuning function. Building
on the neural evidence (Nieder & Miller, 2003), it is
assumed that the more narrow distributions that char-
acterize small number values are more skewed than the
wider distributions that represent larger numbers. Thus,
the tuning functions resemble a Poisson distribution in

that both displays attenuate positive skew. Poisson dis-
tributions have a history of use in neurocomputational
work in describing neural spike trains (Ashby & Valen-
tin, 2007; Boccaletti, Latora, Moreno, Chavez & Hwang,
2006; Song, Miller & Abbott, 2000). The tuning curves
presented in prior work (Nieder & Miller, 2002) are
arranged to show one particular neural population’s
relative activation to varied numerical stimuli. The tun-
ing curves used in the current work represent the relative
activation of a range of neural populations in response to
one specific numerical stimulus. The shape and charac-
teristics of the neural tuning curves, if viewed this way,
retain the identical shape of a positively skewed Gaussian
curve.

Prior research has also reported that when behavioral
errors occur, the neural activity for the preferred quantity
is significantly reduced compared to correct trials
(Nieder et al., 2002; Nieder, Diester & Tudusciuc, 2006;
Nieder & Miller, 2004; Nieder & Merten, 2007). Errors in
neural coding of number were linked to errors in the
behavioral task. This is key to the current framework.
Errors or lack of precision in neural coding may occur
and give rise to these same properties in numerical
judgments.

Number estimation

By a variety of measures, young children are poor esti-
mators of numerical values and relative quantities in
comparison to adults (e.g. Siegler & Booth 2004; Opfer
& Siegler, 2007). One task that has been used to inves-
tigate the development of number estimation is the
mapping of number values to spatial representations
such as a number line (e.g. Baroody, 1999; Booth &
Siegler, 2006; Opfer & Siegler, 2007; Siegler & Booth,
2004; Siegler & Opfer, 2003). Older children’s and adults’
estimates are linear, but preschool (and young school
age) children produce estimations that are overall loga-
rithmic. Researchers have interpreted this developmental
change as a change in children’s cognitive ‘representa-
tion’ of number being initially solely logarithmic
changing to include linear also (e.g. Siegler & Booth,
2004; for an alternative view see Moeller, Pixner, Kauf-
mann & Nuerk, 2009). In brief, by this account, younger
children rely on representations of number on a log scale
while older children are able to use multiple representa-
tions, including linear. Though the behavioral phenom-
enon is quite robust, it is unclear what precipitates the
change toward linear estimation other than increased
experience with numbers, nor is it clear why young
children initially have a logarithmic representation. Just
what might be changing as a function of experience with
numbers?

The advances in understanding the neural coding of
discrete quantities offer a potential account. The
assumption is that cognitive-level representations may
reflect underlying properties of the neural code. As

Figure 2 Example tuning functions used in the current simu-
lations (s = 0.5) for number magnitudes 5, 20, 50 (black, grey,
dotted lines). Linear (top) and log (bottom) scales shown.
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pointed out by many (e.g. Nieder & Miller, 2003; Johnson,
Hsiao & Yoshioka, 2002), studying behavior limits con-
clusions to the realm of cognitive representations; how-
ever, what we know about the neural code suggests a clear
hypothesis about the transition from logarithmic to linear
mapping of numbers to a number line. Children’s diffi-
culty in the number estimation task may arise because the
width of tuning representations which increase propor-
tionally with the magnitude of the number with respect to
the spatial representation of number on number line,
which is not proportionally scaled. Although this is true
for adults as well as children, mapping from a proportional
representational system to a linear one may be more dif-
ficult for young children than adults if the tuning functions
change in certain ways with age. This is the question
investigated in the simulations.

The present approach is consistent with findings sug-
gesting that children and adults often use the same neural
networks for a task, and that differences in performance
are largely a matter of magnitude, timing, or extent of
activation (Brown, Lugar, Coalson, Miezin, Petersen &
Schlaggar, 2005; Casey, Galvan & Hare, 2005; Casey,
Giedd & Thomas, 2000; Durston, Davidson, Tottenham,
Galvan, Spicer, Fossella & Casey, 2006; Gaillard, Hertz-
Pannier, Mott, Barnett, LeBihan & Theodore, 2000;
Rubia, Overmeyer, Taylor, Brammer, Williams, Sim-
mons, Andrew & Bullmore, 2000; Schlaggar, Brown,
Lugar, Visscher, Miezin & Petersen, 2002). That is, chil-
dren may show quantitatively poorer or qualitatively
different patterns of performance because their networks
are noisy, and are less able to drive activation of parts of
the network at the appropriate moment or to the optimal
degree. This has been illustrated in computational work
in which narrowing of tuning functions of neurons con-
tributes to modeling developmental changes in cognition
(e.g. Simmering, Schutte & Spencer, 2008; Schutte,
Spencer & Shoner, 2003). Narrow tuning curves have
been shown to be necessary for accurate coding of
number (Diester & Nieder, 2008). In addition, behavioral
work shows that the Weber Fraction, the smallest pro-
portional difference that can be differentiated, changes
with age (Halberda, Mazzocco & Feigenson, 2008),
which may indicate a change in these underlying tuning
functions..

The following series of simulations show (1) that the
combination of positive linear skew and broad neural
tuning functions leads to estimation errors that are
overall logarithmic; and (2) the log to linear development
in number estimation is facilitated by neural coding of
number and its development, specifically that the nar-
rowing of neural tuning curves with development result
in the log to linear shift seen in the behavioral literature.

Model specifications

The following simulations use vectors to represent neural
tuning functions. Each item in the vectors represents the
relative activation level for a group of neurons that

respond selectively to some number stimuli. Each simu-
lation included one vector for each of the number mag-
nitudes to be estimated. The values in each vector
represent the relative activation (spiking rates) of number
selective neurons. For example, the value A was repre-
sented by the vector A(n1, n2, …n150), where nx is the
activation for the neurons selective for the number
magnitude X. Vectors for values A = 1 through 100 were
calculated and each vector contained 150 activation
values. For example, the activation value at index 5
corresponds to the average activation for all neurons
which respond maximally to the number magnitude 5.
Activation values represent the relative activation levels
for that specific vector only and do not correspond to
specific spiking rates. Research suggests that the maxi-
mum spiking rate for large numbers is actually lower
than for smaller numbers (e.g. Nieder & Dehaene, 2009),
thus here relative spiking rates are used for ease of
comparison. Activation values for each vector were cal-
culated using a modified Gaussian distribution function.
This a general function that defines a variety of Gaussian
distributions. Similar equations have been used in prior
computational work (Dehaene, 2007).

f ðxÞ ¼ he
�ðx�mÞ2

2s2

The values of h and m are set as constants for all
simulations. Whereby h is the maximum value of the
function, this is set to 1; m is the mean of the distribution
and is set to zero. The value of s determines the width of
the curve and varies across model instantiations. X is
defined by the logarithmic difference between the target
number and vector item index. For example if the target
number is A = 6 and S = 1, for A(n6), x = log106 - log106,
x = 0. The remaining equation variables are constants
other than s which for this example is equal to 1. The
equation result is A(n6) = 1; thus when the vector index is
equal to the target number the relative activation equals
1. Then, for A(n4), x = log106 - log104, x = 0.176, and
A(n4) = 0.984. Thus, for index 4 the relative activation is
slightly reduced. The method of defining X by logarith-
mic differences results in Gaussian functions that are
symmetric on a log scale and of identical width (see
Figure 2). On a linear scale the functions vary in width
and positive skew (skew merely refers to the fact that the
function is not symmetric about the mean). Smaller
values are both more narrow and more skewed. Again
this is simply the consequence of transforming a
Gaussian curve that is symmetric on a log scale to a
linear scale.

Methods

All simulations were evaluated using MATLAB (Math-
works) software. A series of simulations were evaluated,
including, as a point of comparison, both symmetric and
positively skewed coding of varying tuning function
widths. In each case coding vectors were calculated for
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target numbers 1 through 100. The initial vectors can be
interpreted as idealized activation patterns to which
some activation noise is added to determine the model
output vectors. If the model produced vectors where the
maximum value has the same index then the model
correctly estimated that number value. Noise is calcu-
lated as an change in the vector values by some percent
taken from a random distribution, where the mean noise
is zero. Thus some vector values increased, others
decreased, and the mean amount of noise was zero. After
the application of noise the vector output values were
calculated, where the index of the maximum value of the
vector equaled the output. For example, prior to noise
the maximum value for the vector representing ‘5¢ is A =
1 at index 5. After the application of noise this value may
have been reduced to some value, 0.79 while the value at
index 6 was increased to 0.81. The vector has now, due to
noise, overestimated the value 5 as 6 for its output. The
use of noise in neural models is well established (Schutte
et al., 2003) and is a more accurate representation of
neural coding than static coding. The entire process of
the application of random noise to the set of tuning
functions was repeated 200 times for 200 simulated
‘subjects’ per coding condition.

As previously noted, prior work has shown that when
behavioral errors occur the neural activity for the pre-
ferred quantity was significantly reduced compared to
correct trials (Nieder et al., 2002, 2006; Nieder & Miller,
2004; Nieder & Merten, 2007). The hypothesis here is
that the pattern of errors in the neural tuning functions
influence the pattern of errors in behavioral output. Thus
for these simulations an incorrect index of the maximum
activation value is interpreted as an incorrect number
estimate.

Results and discussion

For each instantiation the simulation produced estima-
tions were plotted against the target numbers and best fit
lines were calculated. Variances of 0.5, 1, 2, and 3 were
examined for both symmetric and positive skew. R2

values were calculated for both linear and logarithmic

best fit lines, which will be referred to as linear R2 and log
R2 values. For positive skew coding linear R2 values
decreased as variance increased (0.99, 0.95, 0.79, 0.70),
while log R2 values increased (0.81, 0.89, 0.97, 0.94) (see
Figure 3). For symmetric coding, linear R2 values were
similar as variance increased (0.99, 0.99, 0.99, 0.99), as
were log R2 values (0.80, 0.80, 0.83, 0.81). Thus, sym-
metric coding was overall quite accurate in estimation
and did not resemble the log function curve shown by
young children. For positive skew coding small variance
values, which have narrow tuning functions, produce
higher linear R2 values than log R2, similar to older
children; larger variance values, which have broader
tuning functions, produce higher log R2 values than
linear R2 values, similar to younger children. Thus with
the positive skew coding there is a shift from more log-
arithmic estimates to linear estimates as the tuning
function narrows.

Further comparisons between behavioral data and
simulations were completed. A direct comparison was
done between prior behavioral data with the current
model results. Behavioral data taken from Booth and
Siegler (2006, Figure 1), included 37 data points which
were matched to corresponding simulation data points.
Of the current simulations positive skew with a broad
tuning function (S = 2) fits this the closest (see Figure 3).
Simulation data points were highly correlated with the
behavioral data points, R = 0.94.

Only with both an overly broad tuning function and
positive linear skew does the model produce estimations
similar to that of very young children. A narrowing of the
tuning curve produces data similar to developmentally
advanced children and adults. Younger children tend to be
overall less accurate in their estimates and tend to over-
estimate smaller numbers in the number line task. The
simulation matches this pattern due to several factors. As
the width of the tuning function increases, the potential for
large misestimating increases, thus wide neural tuning
functions are less precise than broad tuning functions. In
addition, the positive linear skew of the tuning function
causes any misestimating likely to be overestimations.
The more the skew the more likely an error to be an

Figure 3 Simulation estimates for selected variance parameters. Variances of 2 and 3 produced estimates best described by a
Log function (left panel). Estimation data for model simulation data with positive skew and broad tuning function (s = 2), compared
to behavioral data with kindergarten-aged children (Booth & Siegler, 2006) and the target values (right panel).
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overestimation, as opposed to an underestimation. As the
magnitude of the estimated value increases, positive skew
decreases and misestimating tends to average towards
zero, over- and underestimations are nearly equally likely.
Together these factors contribute to the simulation’s
production of a logarithmic estimation pattern, closely
mirroring behavioral data.

The neural coding of number is unlikely to be the only
influence on children’s performance on estimation tasks.
There certainly must be a ‘read-out’ process to go from a
neural coding to behavioral output. This process could
add noise to the outcome or include influence from top-
down control. Children have been shown to change their
estimation performance based on structured feedback
(Siegler & Booth, 2004; Opfer & Siegler, 2007) and this
may reflect top-down influences on estimations. In the
two studies children who had previously shown loga-
rithmic estimation patterns were given an additional
specific landmark on the number line. After this addi-
tional feedback children adjusted their estimation to a
more linear pattern. While the neural coding may pro-
vide a starting point and present limitations in accuracy,
this may be mitigated by explicit feedback, particularly
with older children.

In both the behavioral task and the current simula-
tions, output estimations are limited to a particular
range. Neither child participants nor model simulations
can provide an estimation more than the top value of
100. This does have some consequences in both cases; by
limiting estimations neither can overestimate values as
greater than 100. In the simulations, removal of this
barrier does slightly reduce the fit of the log function. It
is unclear how child participants would perform in such a
situation. The current model predicts constant propor-
tional variance from the target number.

Prior work has also reported correlations between
number line estimation and other number tasks (Booth
& Siegler, 2006). Children’s score on a standardized math
achievement test was significantly positively correlated
with the linear R2 value of their given estimates. It was,
however, not significantly correlated with mean absolute
error of estimates. This suggests that producing linear
estimation functions is correlated with superior perfor-
mance in related math tasks. This is unsurprising given
the current account. Participants who produce logarith-
mic estimations due to broad neural tuning functions will
also show errors in simple computation, while partici-
pants who produce linear estimations due to narrow
tuning functions may show fewer errors in computation.

Operational momentum

Another relevant aspect of number cognition is the
development of knowledge of arithmetic operations.
Research on simple arithmetic includes participants from
5-month-olds (Wynn, 1992), to older children (e.g. Barth,
Beckmann & Spelke, 2008; Prather & Alibali, 2011) to

adults (e.g. Barth, Mont, Lipton, Dehaene, Kanwisher &
Spelke, 2006; Robinson & Ninowski, 2003). In one such
avenue of research several studies have described a phe-
nomenon termed operational momentum (Knops, Via-
rougue & Dehaene, 2009; Lindemann & Tira, 2011;
McCrink, Dehaene & Dehaene-Lambertz, 2007; McCr-
ink & Wynn, 2009). In short, for addition (A + B = C)
participants tended to overestimate the value of C, while
for subtraction (A – B = C) participants tended to
underestimate. The basic phenomenon has been shown
with participants ranging from 9 months to adults. A
high-level representational account of the phenomenon
was envisaged: humans are able to cognitively represent
numbers spatially and thus addition and subtraction
involve moving along the mental number line. For both
addition and subtraction the participants overshoot the
value of C, leading to overestimation in addition and
underestimation in subtraction. Arithmetic errors are a
result of movement along the mental number line where
the correct answer is overshot; perhaps a similar mech-
anism to representational momentum (Hubbard, 2005).
The original work describing operational momentum
(McCrink et al., 2007) also suggested that the effect may
reflect properties of the neural coding of number and
does so in terms of arithmetic operations as movement
along a mental number line.

Given the prior work on the use of mental number lines
(e.g. Dehaene, Bossini & Giraux, 1993), this appears to be
a plausible behavioral description of the phenomenon.
The current simulation examined how and if the neural
coding of number may contribute to this behavioral phe-
nomenon. The current simulations illustrate that for the
operational momentum effect, the mental number line
explanation is unnecessary once the neural coding of
number is taken into account. Again, the simulations
examined how two key tuning function characteristics,
positive skew on a linear scale, and proportional scaling,
contribute to the patterns of performance reported in the
operational momentum literature – a tendency to overes-
timate addition and underestimate subtraction.

Model specifications

Model specifications were identical to the prior experi-
ment with the exceptions of the range of number values,
the length of vectors and tuning function widths con-
sidered. In the following simulations values 1 to 30 were
used in a variety of arithmetic equations. Each value was
represented by a vector contained of 50 items. Variance
parameters 1, 1.5, and 2 were evaluated.

Method

All simulations were evaluated using MATLAB (Math-
works) software. Two separate simulations were carried
out; symmetric Gaussian coding and positively skewed
Gaussian coding (on a linear scale). In each case coding
vectors were calculated for target numbers 1 through 30.
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Random noise was then added to each vector value,
whereas the activation level was altered by a percent
calculated from a random distribution. The amount of
noise applied was random and independent for each
vector value.

After the application of noise the vector output values
were calculated, where the index of the maximum value
of the vector equaled the output. For example, prior to
noise the maximum value for the vector representing ‘5¢
is A = 1 at index 5. After the application of noise this
value may have been reduced to some value, 0.79, while
the value at index 6 was increased to 0.81. The vector has
now, due to noise, overestimated the value 5 as 6 for its
output. The output values for all vectors were then used
to calculate the simulated results of the full set of addi-
tion and subtraction equations. For example, for the
equation 7 + 3, the vectors representing 7 and 3 are
applied some random noise, and then some resulting
outputs, e.g. 7, 4 are combined together to determine the
model estimate of the addition equation, in this case 7 +
3 = 11. Again, this paradigm is based on prior work
reporting correlations between neural coding errors and
behavioral errors (Nieder et al., 2002, 2006; Nieder &
Miller, 2004; Nieder & Merten, 2007). The entire process
for the set of equations was repeated 200 times for 200
simulated ‘subjects’ per coding condition.

Results and discussion

Simulation results were analyzed separately by coding
style and equation operation. For addition and sub-
traction there were 435 equations evaluated each (all

combinations of 1–30). The percent deviation between
the target result and the simulated result was calculated
for each equation. For positive skew coding, tuning
function widths (S = 2, 1.5, 1) tended to produce average
overestimate deviations for addition and underestimate
deviations for subtraction, 72% and -39%, 56% and -
19%, 37% and 2%, respectively. For symmetric coding, all
tuning function widths (S = 2, 1.5, 1) produced small
average deviations for addition and subtraction, 0.28% -
0.32%, 0.21% 0.14%, 0.01% 0.03%, respectively. Thus the
operational momentum is more severe for relatively
broad tuning functions.

Performance curves for addition and subtraction
were calculated, similarly to that reported in prior
behavioral work regarding operational momentum
(McCrink et al., 2007). For each equation the differ-
ence between the simulated result and the target result
was calculated as a percentage difference (see Figure 4).
The performance curve conveys the frequency of over-
and underestimation errors for both addition and
subtraction. The behavioral data show that overesti-
mates are more frequent for addition while underesti-
mates are more frequent for subtraction. The current
simulation results show that for the positive skew broad
tuning function condition addition equation results are
more frequently overestimated than subtraction. Sym-
metric coding shows equal frequency of over- and
underestimation for both addition and subtraction.
Thus, the simulated data with positive skew and broad
tuning function show the same cross-over between
addition and subtraction as the behavioral work, while
symmetric coding does not.

Figure 4 Performance curves showing the relative deviation from the target value for both addition and subtraction equations.
Behavioral data from McCrink et al. (2007) are also shown.
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The data reported here suggest that a positive linear
skewed neural coding of number (Nieder & Merten,
2007; Neider & Miller, 2002; Verguts & Fias, 2004)
results in arithmetic errors that are consistent with the
reported behavioral phenomenon termed operational
momentum. That is, addition operations tend to be
overestimated, while subtraction is underestimated. This
occurs because both the chance of a misestimate and the
type of misestimate vary by magnitude. While smaller
numbers with sharper tuning functions tend to have both
less frequent and smaller errors, the errors that do occur
are much more often overestimations than underesti-
mations. That relatively small values are typically over-
estimated is consistent with prior work on the
development of numerical estimation in children (Booth
& Siegler, 2006; Huntley-Fenner, 2001; Opfer & Siegler,
2007) and numerical estimations in non-human animals
(e.g. Brannon & Roitman, 2003; Platt & Johnson, 1971).
Given the relative magnitude of numbers in addition and
subtraction equations, this particular tendency of mis-
estimation accounts for both overestimation of addition
and underestimation of subtraction.

Cognitive accounts of operational momentum
(McCrink et al., 2007; Knops et al., 2009) such as spatial
associations with number (Dehaene et al., 1993; Knops
et al., 2009; Santens & Gevers, 2008) are not necessarily
inconsistent with the current account. A variety of cog-
nitive representations could exacerbate the behavioral
pattern including number-spatial associations. However,
the current account requires a priori only the experi-
mentally established neural coding of number. Prior
research has illustrated how number selective neurons
can come about through unsupervised learning (Verguts
& Fias, 2004), neural data illustrate the positive skew and
relative width of the neural tuning functions used in the
current simulations (e.g. Nieder & Miller, 2003). The
effect can be described as a ‘natural result’ of the neural
coding.

There were several differences of note between the
current model and typical behavioral methodology. The
behavioral methodology (McCrink et al., 2007; Knops
et al., 2009) has typically included a verification task in
which participants evaluated presented arithmetic
results, whereas the current simulations produced the
results of arithmetic equations. In addition, the behav-
ioral methodology has typically used a limited set of
arithmetic equations, due to experimental constraints,
whereas the current simulations evaluated all relevant
arithmetic equations, resulting in a more comprehensive
data set.

General discussion

The current work

The simulation results presented here illustrate how the
neural coding of number magnitude directly contributes

to several known behavioral phenomena in numerical
cognition. While there has certainly been discussion
regarding connections between neural coding and
numerical development, the current account presents an
unprecedented level of detail regarding the influences of
neural coding patterns on specific behavioral patterns:
the developmental change in number line estimation and
the operational momentum effect. Research in both these
areas includes a variety of explanations such as log to
linear representational shifts (Siegler & Opfer, 2003) and
spatial representations of number (McCrink et al., 2007).
However, the degree to which the neural coding of
number and its change during development can account
for these behavioral phenomena should mediate the need
for additional cognitive-level explanations.

In brief, the present work contributes to current
understanding of developmental changes in number cog-
nition by offering a framework for understanding both the
age-invariant aspects of number reasoning and develop-
mental change. The simulations show how the neural
coding of number may influence several behavioral phe-
nomena in the number cognition literature. The current
stimulation combines known characteristics of the neural
coding of number with other neurocognitive principles,
such as activation noise and response function sharpen-
ing. The sharpening of the simulated neural tuning func-
tions lead to changes in the modeled behavior that closely
mirrored several developmental phenomena. More criti-
cally, the current simulations suggest how both quantita-
tive and qualitative changes in number judgments with age
and experience may be understood in terms of the fun-
damental properties of how number magnitude is repre-
sented and in changes in the tuning functions of those
properties. Although the present study does not make a
direct link between experience and changes in these tuning
functions, a large literature on perceptual learning both at
the behavioral and neural levels is consistent with the idea
of a narrowing in tuning functions with increasing expe-
rience (e.g. Goldstone, 1998; Luce, Green & Weber, 1976;
Recanzone, Schreiner & Merzenich, 1993; Saarinen &
Levi, 1995; Simmering et al., 2008; Schutte et al., 2003).
Moreover, several studies of the development of number
concepts and mathematical reasoning have pointed to
precision of encoding as contributing to the better per-
formance of older children; precision, in turn, may be re-
lated to experience-dependent aspects of these tuning
functions especially the breadth of the tuning function.
Developmental research in other domains (visual per-
ception) has pointed towards similar ideas; developmental
effects may be caused by increased representational acuity
of the underlying neural mechanisms. The Representa-
tional Acuity Hypothesis (Westermann & Mareschal,
2004) posits that infants’ visual development is driven in
part by the narrowing of receptive fields for visual cortex
neurons. Thus, it may be the case that the same general
mechanism of the sharpening of neural tuning functions
can account for developmental phenomena in a variety of
domains.
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The simulations were specifically based on multiple
non-human primate neural studies and computational
accounts that have reported both proportional scaling
and positive linear skew in the neural coding of number
magnitude. Given these characteristics of the neural
coding, a simple model of neural activity shows that
patterns of errors mirroring the behavioral data emerge
as a result of the neural coding. This is not to say that
neural coding of number is the only influence on
behavior in these or any other tasks, nor that these are
the only properties of tuning functions that might be
relevant. Indeed, dynamic aspects of this coding – rise
times, fall times, and potentially forms of inhibition of
return (e.g. Spencer, Thomas & McClelland, 2009) – may
also be relevant as more sluggish representations rather
than more temporally defined ones may lead to diffi-
culties in serial behaviors such as counting and perhaps
some forms of calculation. The properties of the coding
and representation of number are foundational to num-
ber cognition and the present simulations are a first step
to understanding their potential relevance to the devel-
opment of number cognition.

The current account is a parsimonious account of
several phenomena in the number cognition literature.
For both number line estimation and operational
momentum prior accounts posit cognitive representa-
tions such as mapping number to space and arithmetic
as movement along a line. For estimation the current
simulations show how changes in neural coding account
for known developmental patterns. For operational
momentum the data predict a possible developmental
trajectory. Though prior work (Dehaene, 2007) has dis-
cussed the possible influences of neural coding on cog-
nitive development, no data have been reported
regarding either estimation development or operational
momentum. The simulations illustrate how the observed
behavioral data could emerge as a direct result of neural
coding of number. While the current account does not
necessarily contradict cognitive-level explanations, the
inclusion of the influence of neural coding is a significant
enhancement and provides a framework for further
exploration of limitations and influences on early num-
ber cognitive development.

Remaining theoretical issues

In the current simulations developmental changes are
approximated through a narrowing of the neural tuning
functions. Though this developmental change has some
support in the literature (e.g. Simmering et al., 2008;
Schutte et al., 2003), it is unclear whether other factors
may influence neural tuning functions of number mag-
nitude. Prior computational work (Verguts & Fias, 2004)
has suggested that in number cognition the use of specific
symbols to refer to magnitudes leads to narrower tuning
functions for the said magnitudes. If this is the case,
children’s experience with the symbolic number system
may be a factor in making more linear estimations

(Dehaene, 2007). If symbolic representations lead to
narrower tuning functions, then one would expect a close
relation within individual children between their number
knowledge, operational momentum, and ability to map
numbers to a number line, as well as the Weber fraction
for discrimination. Moreover, one might expect more
linear mappings of numbers to a number line given tasks
that encourage symbolic representations versus those
that do not. On the other hand, symbols per se may not
be the critical experience in changing these tuning func-
tions; rather, discrimination of discrete magnitudes (with
or without symbols) may be, in domains outside of
number, perceptual tuning functions have been shown to
sharpen with experience in making finer discriminations
(Yang & Maunsell, 2004).

The current simulations used neural coding of number
placed on a linear scale. Much has been written regarding
the best description of neural and cognitive representa-
tions of number being either linearly or logarithmically
scaled. Nieder and Miller (2003) put forth the most
comprehensive augment regarding linear versus non-lin-
ear coding and concluded that non-linear coding best
described both neural and behavioral data. Given that
number is coded in a non-linear fashion, number repre-
sentation is essentially proportional, consistent with
findings regarding perceptual magnitude representation
(e.g. Billock & Tsou, 2011; Stevens, 1957; Stevens &
Marks, 1980). However, behavior regarding number and
symbolic number systems is frequently performed on a
linear scale. In the broadly adopted Hindu-Arabic base-10
number system, number increases linearly. Thus, exam-
ining the neural coding with respect to a linear scale is
relevant to mathematical reasoning and to number con-
cepts. Of course, linear and logarithmic representations
are transformations of each other, and so the present
approach might be viewed simply as taking a transfor-
mation of the neural coding system that makes the rele-
vance of that system to common number tasks more clear.

Further directions

Recent research suggests a relationship between the
‘primitive sense of number’ and math ability (Libertus,
Feigenson & Halberda, 2011). Children’s acuity with
non-symbolic number magnitudes (dot patterns) is
associated with later performance in symbolic mathe-
matics, while controlling for other factors. The current
results are consistent with the idea that numerical acuity
can have a direct influence on math performance. It
may be the case that numerical acuity influences math
performance, and that acuity is in turn based on the
neural tuning functions. This relationship raises the
possibility that sharpening tuning functions to improve
numerical acuity may also be a way to improve sym-
bolic math performance. Future work will address what
influences individual differences in number acuity and
what experiences may lead to the sharpening of neural
tuning functions. The answer to these questions could
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lead to design of interventions for children’s math
performance.

There are a wide array of behavioral phenomena in the
number and mathematical literature, including early non-
symbolic arithmetic (Barth et al., 2006; Wynn, 1992),
symbolic system acquisition (McNeil & Alibali, 2004;
Uttal, Scudder & Deloache, 1997), multimodal presen-
tations of number, such as auditory or tactile (Jordan &
Brannon, 2006) and relations to other forms of magni-
tude (Cohen Kadosh & Henik, 2006; Lourenco & Lon-
go, 2010; Walsh, 2003). Though there is evidence
regarding neural coding of ‘pure number’, we need more
neural and behavioral data regarding number in multiple
modalities, representations and in comparison to other
perceptual magnitudes, which may share some similari-
ties with discrete number and thus may be relevant to
some aspects of early number judgments (Clearfield &
Mix, 1999). In addition, next steps require linking
hypothesized changes in these properties of neural codes
to number judgments in individual children across a
variety of tasks that should be dependent on the prop-
erties of this coding, as well as examining how – and what
kinds of – experiences may play a role in these tuning
functions. Adding this perspective to the developmental
study of number cognition offers a unifying framework
for the rapidly advancing knowledge about early number
concepts, about the influence of learning symbolic rep-
resentations of number on number system, and about the
patterns of errors (and difficulties) that characterize
young school age children’s mathematical learning.
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